The case for delaying solar geoengineering research

post by Halstead · 2019-03-23T15:26:13.119Z · score: 49 (20 votes) · EA · GW · 14 comments

Contents

  1. Solar geoengineering is not feasible for the next few decades 
  2. Solar geoengineering research is a moral hazard and research might uncover dangerous weather manipulation methods 
None
14 comments

Tl;dr:

Argument:

1. Solar geoengineering is not feasible for the next few decades.

a. Solar geoengineering poses major governance challenges.

b. These governance challenges are only likely to be overcome in at least 50 years’ time.

2. Solar geoengineering research is a moral hazard, and research might uncover dangerous weather manipulation methods.

3. Given this risk and given that we can delay research without obvious costs, there is a good case for delaying solar geoengineering research at least for a few decades.

Epistemic status: Seems correct to me, but some expert disagree (though I don’t think they have been exposed to these arguments).


Solar geoengineering is a form of climate intervention that reduces global temperature by reflecting sunlight back to space. The best studied form - stratospheric aerosol injection - involves the injection of aerosols, such as sulphur, into the stratosphere (the higher atmosphere). This mimics the effects of volcanoes, which can have globally significant effects via the same mechanism. For example, the Pinatubo eruption in 1991 cooled large parts of the Earth by about half a degree. Computer modelling studies have suggested that, if done in a certain way and in certain climatic conditions, solar geoengineering could eliminate many of the costs of global warming without having serious side-effects.[1] [EA · GW] These models are of course limited and crude, but they do suggest that solar geoengineering could be useful tool, if it could be deployed and governed safely.

Consequently, interest in the technology is increasing, as discussed in this Economist article. The Open Philanthropy Project has in the past funded solar geoengineering governance research and computer modelling efforts.

Here, I will argue that we should delay solar geoengineering research for a few decades.

1. Solar geoengineering is not feasible for the next few decades

a. Solar geoengineering poses severe governance challenges

In my view, solar geoengineering is only likely to be used once warming is quite extreme, roughly exceeding around 4 degrees. The reason for this is that solar geoengineering would likely be extremely difficult to govern. I outline some of the governance challenges in section 3.4 of my paper on solar geoengineering.

Solar geoengineering, if done using the stratospheric aerosol injection method, would affect the weather in most or all regions.[2] [EA · GW] Solar geoengineering would therefore politicise the weather in all regions, and would have diverse regional effects. Adverse weather events would likely be blamed on solar geoengineering by affected countries, even if they were not in fact caused by solar geoengineering. Public anger at such weather events would likely be severe if they thought a massive international weather alteration scheme were at fault. Computer models could at best offer highly imperfect attribution of weather events to climatic causes.

This suggests that for solar geoengineering to be feasible, all major global powers would have to agree on the weather, a highly chaotic system. Securing such an agreement would be extremely difficult in the first instance and also extremely difficult to sustain in the longer-term. States would also foresee the problems of sustained agreement, disincentivising successful agreement in the first place.

b. These governance challenges are only likely to be overcome in at least 50 years’ time.

In light of this, solar geoengineering is only likely to be used once climate change is very bad for all regions. Judging when this point will occur is difficult, but my best guess having looked at the climate impacts literature in some depth is that this would only likely happen after about 3-4 degrees of warming.

We have had about 1 degree of warming thus far and, according to an IMF report, a further 1 degree of warming would be economiclly positive for many regions, especially Canada, Russia and Eastern Europe, and even potentially China (IMF report page 15).

(Note that even this modest climate change is bad overall for the world.)

Russia is a crucial factor here: global warming seems likely to bring numerous economic benefits for Russia, freeing up the Russian Arctic for exploration and thawing potential farmland. It is very unlikely that they would agree to a global scheme that would likely damage their economic prospects. Without agreement from Russia, I find it difficult to see how solar geoengineering could ever be implemented.

Thus, it seems implausible that solar geoengineering would be practicable at 2 degrees of warming, and 4 degrees is a more plausible threshold, in my view.

However, 4 degrees of warming will take many decades to occur. On the highest emissions scenario considered by the IPCC, 4 degrees of warming would take at least 50 years to occur (IPCC synthesis, p59).

This means that solar geoengineering is only likely to get used by around 2070, giving us 50 years from now to find a solution.

One potential counter-argument would point to runaway feedback loops that cause rapid warming, such as release of massive amounts of methane from clathrates. I have looked at the evidence for this and the evidence overall seems slim and the median view in the literature is that this is a negligible risk for the next century at least. See section 4 of my write-up on climate and ex risk for more on feedback loops.

2. Solar geoengineering research is a moral hazard and research might uncover dangerous weather manipulation methods

Research into solar geoengineering itself carries two main risks.

A persistent worry about solar geoengineering research concerns moral hazard: the worry that attention to plan B will reduce commitment to plan A. Having solar geoengineering as a backup will decrease commitment to reducing carbon emissions, which almost all researchers agree to be the top priority. The best discussion of this is in Morrow’s paper,[3] [EA · GW] and I discuss the considerations on moral hazard risk at length in sections 4-6 of my paper. Overall, I think this is a genuine risk with solar geoengineering research and a reason not to carry out research.

Another risk of solar geoengineering research is that it will uncover new technologies that could destabilise global civilisation. I discuss weaponisation risks in section 3.2 of my paper. For example, climate researcher David Keith has discussed the possibility that a certain type of nanoparticle could be much longer lasting than ordinary solar geoengineering and so could potentially precipitate an ice age if deployed for long enough. I don’t think this particular technology could actually be a feasible doomsday weapon, but there is a concern that further research could uncover dangerous unknown new geoengineering technologies.

In a nutshell, for those persuaded by the Vulnerable World Hypothesis, research into technologies that could dramatically alter the weather seems like the kind of thing we should avoid if we can.

3. We should delay solar geoengineering research

Solar geoengineering research has clear risks and, given that we cannot deploy it at least for the next 50 years, there is no need to incur these costs now. Instead, the more prudent course seems to be to wait and see how well standard mitigation efforts go and then, if these continue to fail, start researching solar geoengineering in earnest around the middle of the 21st century. This would give us at least 20 years to cover the technical details and a governance framework. This seems to me like enough time, given that:

I at least don’t think that we need 50 years of forward planning to figure this technology out if we need to use it. Committing research hours when we know it may actually be used makes more sense when research risks undermining fragile commitment to mitigation, and risks discovering dangerous new technologies.

Note that my view has changed on this and that in my paper on solar geoengineering, I made a tentative case for primarily governance-focused research.

[1] [EA · GW] For layman’s discussion of a recent paper, see this Vox piece.

[2] [EA · GW] The reason for this is that the particles would be distributed globally by stratospheric winds.

[3] [EA · GW] David R. Morrow, “Ethical Aspects of the Mitigation Obstruction Argument against Climate Engineering Research,” Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 372, no. 2031 (December 28, 2014): 20140062, https://doi.org/10.1098/rsta.2014.0062.

14 comments

Comments sorted by top scores.

comment by Larks · 2019-05-17T03:01:59.412Z · score: 8 (2 votes) · EA · GW
A persistent worry about solar geoengineering research concerns moral hazard: the worry that attention to plan B will reduce commitment to plan A. Having solar geoengineering as a backup will decrease commitment to reducing carbon emissions, which almost all researchers agree to be the top priority.

I'm not really sure why this would be a problem, though I read the sections in your paper - perhaps I just didn't understand properly. Moral hazard occurs when one group (Agent) pays another (Insurer) to cover the damages of some future event that Agent is partly responsible for. Because of this insurance, Agent has less incentive to avoid/mitigate the event. Insurer now has more incentive, but if it is cheaper for Agent to mitigate it than Insurer, total mitigation will go down (or total $ expenditure on mitigation will have to go up). This is inefficient, but due to imperfect contracting and monitoring hard to avoid.

But in the geoengineering case Agent and Insurer are the same - they're the researchers/governments. This doesn't seem so much like moral hazard as simply the substitution effect, in the same way that solar and geothermal energy are (imperfect) substitutes. Given the optionality inherent in research, it seems you need some strong irrationality story to say there will be a net-negative expected substitution effect.

I agree the weaponisation risks make sense as a reason not to do it, but they seem separate from the moral hazard idea.

comment by Halstead · 2019-05-17T13:31:40.768Z · score: 2 (1 votes) · EA · GW

I agree it's not technically the right name, but people generally know what it means which was important for a blogpost. In the paper I actually call it the mitigation obstruction argument. I explicitly discuss the irrationality assumption required for the mitigation obstruction argument in my paper. I think the question of how irrationally people/governments will respond to research is an open one.

comment by andrewpei · 2019-03-26T20:41:15.582Z · score: 8 (5 votes) · EA · GW

Interesting ideas and post! First a critique. It didn't sound right that we should wait 50 years for improved governance. Governance isn't something that just improves on its own over time, it's not a force of nature. It manifests and changes in response to human needs. The aftermath of WW1 brought the League of Nations, WW2 brought on the UN and EU, the Cold War created NATO. If anything it seems that changes to governance happen AFTER a need arises, not preemptively. I know we all wish that weren't the case but it is what is.

The development of advanced geo engineering technology could serve as a catalyst for enhanced global governance. It might also lead to war but I think that's less likely than you do. My reasoning is first that it's likely that only great powers will have the ability to deploy such technology and second that the cost of war between great powers would far exceed the benefits of climate change for the aggressor. To confidently keep a country from being able to produce or buy the resources needed for climate change reversal would possibly require occupation. It's hard to imagine that being worth it or even possible.

That said I do buy into Bostrom's Vulnerable World framework, at least in the context of AI and perhaps biotech. It's totally plausible that geo engineering is another black or grey ball in the urn of innovation. The movie Snowpiercer and the weather control superweapon from Red Alert 2 (a video game) came to mind immediately while reading your post haha. I'm not convinced yet of the threat of geo engineering but I am totally in favor of improving global governance (get rid of permanent security council membership!) and applying more caution towards innovation.

comment by Halstead · 2019-03-27T18:54:08.815Z · score: 2 (1 votes) · EA · GW

Hello,

I'm not completely sure I follow why your first paragraph is a critique. I don't expect governance to improve on its own. My claim is that we do not need 50 years of governance research to get governance to a sufficiently good level should we need to deploy solar geoengineering in the future. The hope is that we will be wise enough not to have to use it because we will start serious mitigation, and I'm worried that geoengineering research could be one of many factors that could derail those efforts.

It is true that developing geoengineering technology would create incentives to improve governance mechanisms for geoengineering. I'm not sure why that is a critique of my argument.

I agree that war is unlikely for the reasons you outline.

comment by dpiepgrass · 2019-03-31T04:28:01.759Z · score: 6 (6 votes) · EA · GW

Additional objections to stratospheric aerosol injections:

1. Stratospheric aerosol injections will stop global warming but not ocean acidification, which is caused directly by CO2 dissolving in seawater. This is a notable consequence if this "plan B" disrupts the "plan A" to reduce our carbon emissions to zero or below.

2. Once (conventional) aerosol injections start, they must not be stopped. Explanation:

I think it's fair to say that the main danger of global warming is its speed: ecosystems and human civilization would perhaps barely notice if the global mean land temperature were to rise 3°C gradually over the course of 10,000 years, but the same change in 100 years is difficult to bear (trivia: climate models and recent temperature records all agree that land temperatures will rise faster than sea temperatures; they disagree as to the extent of this phenomenon but, long story short, if global temperatures rise 2.2°C this corresponds to about 3°C warming on land, or more in the short term. I think that the goal to "keep global warming under 2°C" rather than "under 5°F on land" was a bit of a marketing mistake. Details in this paper.)

Stratospheric aerosols fall out of the stratosphere after a year or two, whereas much of our CO2 emissions will stay in the atmosphere for hundreds of years. Once stratospheric aerosol injections begin (assuming net CO2 emissions remain above zero), the quantity of aerosols must be continually increased to maintain a roughly constant temperature.

If the injections are ever suddenly stopped, most of the warming that would have occurred, over the decades or centuries that injections have been done, will occur immediately. This extremely rapid change is potentially very disruptive to humanity and global ecosystems, so an injection program should not begin without a very high confidence that we can ensure the injections will continue in perpetuity.

3. It may already be too late to avoid this problem, but in case of a global catastrophe, where modern society and most of its technology disappears for some reason, we'll want to rebuild society afterward. To this end, it may be significantly easier to rebuild if there is some oil left in the ground that is accessible to the reconstruction effort.

comment by Halstead · 2019-03-31T19:52:35.460Z · score: 2 (1 votes) · EA · GW

2. I don't think this is right, for reasons discussed in this Nature paper. Firstly, solar geoengineering could be used to slow the rate of warming even if it is deployed temporarily. You could deploy it over e.g. a fifty year period and thereby delay the point at which we reach peak warming, and then taper it out gradually. Secondly, as you say, an exception is if CO2 emissions stay above zero. Solar geoengineering could in principle buy us time to abate emissions and to take CO2 out of the atmosphere in which case it would not have to be deployed for the full lifetime of CO2 in the atmosphere. In this case, solar geo would slow the rate of warming and reduce peak warming.

Thirdly, I don't see why solar geoengineering would ever be stopped suddenly once we started. The reasons for this are discussed in the Parker and Irvine piece on solar geoengineering. All countries would have a reason to prevent it from stopping suddenly and would have the means to do so given how cheap it is. A catastrophe causing termination would have to be extraordinarily specific.

3. To clarify, is your point here that we should focus on mitigation because then we'll be left with some spare oil come a later catastrophe?

comment by dpiepgrass · 2019-04-04T22:00:42.301Z · score: 1 (1 votes) · EA · GW

2. My assumptions were that geoengineering might reduce society's drive for mitigation (the switch to clean energy), and that it would be used to halt the temperature increase.

In the linked paper (Keith & Macmartin 2015) their proposal [actually they use the word "scenario" - I don't think they are going so far as to endorse it as a plan] is a bit different. They propose to use *half* as much aerosols as would be required to halt global warming (this is a bit tricky to get right, e.g. the radiative forcing of aerosols has much greater uncertainty than the forcing of CO2, so their proposal includes feedback to modify the injections as decades pass and observations are gathered about the effect of the aerosols). The paper says "We do not claim that this scenario is optimal. Rather we claim that good-quality policy-motivated scientific analysis requires an explicit scenario, and that this scenario is less obviously suboptimal than some scenarios employed in the literature." They point out that the harms of global warming increase superlinearly with temperature change, so I think they are saying that avoiding half the warming, or at least slowing global warming by half, is a reasonable compromise that avoids the worst harms without turning global warming into a total non-issue.

"Temporary deployment does not reduce long-term climate change. Warming in 2300, for example, is almost completely determined by cumulative carbon emissions and is unaffected by SRM that ends in 2200. Some commentators conclude that such temporary SRM offers no benefits, suggesting that it must be maintained forever." The paper counters that many climate change impacts depend on the rate of change - that if warming is slowed down, it is less harmful even if the total warming over 200 years is left the same. So I think the proposal here is to taper off the aerosol injections in such a manner that, in the worst case, we get the same warming over 200 years rather than 100.

They note that "It is clear that this scenario does not directly address thresholds that are a function only of the magnitude of the change rather than the rate, although it does delay reaching these thresholds, giving more time both to learn about the system and develop alternate strategies." The total amount of warming in their scenario *would* be decreased if we invent and deploy a technology that can remove CO2 from the air permanently (such technologies are very far from economical today). However, we can't guarantee we will invent an economical technology to do this. If we don't, Greenland may still melt under their scenario, but later than it would have otherwise ("in Fig. 1, the time to reach a temperature rise of 2 °C above pre-industrial increases from 2055 to 2068, while the time to reach a 2.5 °C rise increases by 32 years.").

Regarding stoppage of geoengineering due to catastrophe, they say, "While not discounting the possibility of social collapse, we note that humanity has operated technologies such as trans-oceanic communication links and electric power grids for more than a century in spite of horrific wars. Moreover, in considering the implications of a possible social collapse on the public policy of SRM [Solar Radiation Management], one must set the risks of termination against the (likely) greater human suffering that would arise directly from the collapse itself." So, if there's a global catastrophe, a sudden increase in global warming seems like a minor footnote in comparison.

I remain concerned that geoengineering is a distraction that could reduce the pressure to reduce CO2 emissions, but if geoengineering were to become a popular political position, I agree that Keith & Macmartin's proposal seems better than the "default" geoengineering proposal that people (including me) naively think of, i.e. to simply stop global warming regardless of CO2 emissions.

3. Yes.

comment by Lukas_Finnveden · 2019-03-24T09:36:13.727Z · score: 5 (5 votes) · EA · GW
This suggests that for solar geoengineering to be feasible, all major global powers would have to agree on the weather, a highly chaotic system.

Hm, I thought one of the main worries was that major global powers wouldn't have to agree, since any country would be able to launch a geoengineering program on their own, changing the climate for the whole planet.

Do you think that global governance is good enough to disincentivize lone states from launching a program, purely from fear of punishment? Or would it be possible to somehow reverse the effects?

Actually, would you even need to be a state to launch a program like this? I'm not sure how cheap it could become, or if it'd be possible to launch in secret.

comment by Halstead · 2019-03-24T09:54:49.782Z · score: 11 (4 votes) · EA · GW

Hello, good points! I discuss this supposed free driver/unilateralist's curse feature of solar geoengineering in section 3.2 of my paper. This is a recurrent worry in the literature, but I don't find it plausible. Quoting from ym paper:

"In my view, the risks of unilateralism are overstated. Firstly, as argued in Section 1, the cost estimates relied upon are likely to be a significant underestimate, plausibly by an order of magnitude. Secondly, as Parson (2014, 98) has argued “these scenarios overstate the distribution of capabilities and thus the risk of unilateral action, because they focus too narrowly on financial cost as the determinant of capability and neglect other, non-financial, requirements and constraints.” An SAI programme large enough to make a non-trivial sustained impact on the climate would be hard to conceal and vulnerable to military attack. “[U]nilaterally achieving a climate alteration that matters would require not just the money, technological capability, and delivery assets, but also the command of territory, global stature, and ability to deploy and project force necessary to protect a continuing operation against opposition from other states, including deterring their threats of stopping it through military action.” (Parson 2014, 99) This suggests that scenarios in which small states or rich individuals deploy SAI are vanishingly unlikely"

I then argue that multilateralism is actually the guiding logic of solar geoengineering:

" Indeed, Horton (2011) has persuasively argued that SAI is actually characterised by a logic of multilateralism. The success of an actor’s SAI programme would depend on whether other actors were also pursuing their own SAI programme and would be ineffective without coordination. Moreover: “States opposed to geoengineering have a number of tools at their disposal to counteract climate interventions. In the case of SAI, for example, fluorocarbon gases could be deployed to offset cooling effects. Alternatively, the strategic use of black carbon could neutralize artificial albedo enhancement.”(Horton, 2011, 62) In short, if powerful actors were opposed to an SAI programme by a state or a collective of states, they could effectively discourage it using ordinary military threats or by counteracting the effects of SAI. The foregoing suggests that the decision to deploy unilaterally would not be taken lightly, given the incentives created by conventional military threats and the ease with which SAI schemes can be disrupted. Even for a case in which a major power is facing very severe climate impacts, SAI without support from other major powers would likely either be counter-productive or ineffective. In my view, this suggests that unilateral deployment even by a powerful state or some coalitions of powerful states is not a serious danger, provided that there are some dissenting major powers (though it should be noted that many experts disagree)."

Imagine that India is deciding whether to launch a solar geoengineering programme that would dramatically affect the weather in China. I think it is clear that they would not proceed without Chinese agreement, given the enormous risk of war.

comment by kbog · 2019-05-16T07:12:07.222Z · score: 2 (1 votes) · EA · GW

Countries are already willing to bear the local costs of reducing CO2 emissions in service of the global goal of reduced CO2 emissions. Russia already signed the Paris agreement. Poor countries who will lose statistical lives from energy regulations have signed the Paris agreement. So I think you are overstating the governance obstacles a little bit. Maybe this is addressed in those papers which discuss compensatory schemes, idk.

The geopolitical balance of power is not constant. In the next decades we will most likely see increasing geopolitical status for India, Brazil and possibly Africa. These countries have the strongest interests in preventing climate change and will make it easier to push a global movement for geoengineering.

comment by Pawntoe4 · 2019-11-23T18:21:59.024Z · score: 1 (1 votes) · EA · GW

Hi John, thank you for this piece. I know it's been a long time since you posted this but I wanted to respond to some of your thoughts.

"In my view, solar geoengineering is only likely to be used once warming is quite extreme, roughly exceeding around 4 degrees" - +4C is already endgame and catastrophic in my opinion. Considering that most of the heat is being absorbed by oceans leading to acidification, we'll already be seeing significant sequestration losses as marine animals are unable to build calcium carbonate shells.

"This suggests that for solar geoengineering to be feasible, all major global powers would have to agree on the weather, a highly chaotic system." - individual actors may resort to solar geoengineering without worldwide consensus, especially if countries that aren't suffering from climate change are actively blocking mitigation attempts while still polluting. Understanding the possible ramifications before people begin to experiment through desperation is surely a good thing (e.g. India, China, Saudi Arabia, Brazil).

"We have had about 1 degree of warming thus far and, according to an IMF report, a further 1 degree of warming would be economiclly positive for many regions, especially Canada, Russia and Eastern Europe, and even potentially China (IMF report page 15)." - I think this is sketchy at best. The caveat footer 9 on page 14 should indicate how limited their conclusion is, not counting weather effects, migration, ecological effects, etc.

"Russia is a crucial factor here: global warming seems likely to bring numerous economic benefits for Russia, freeing up the Russian Arctic for exploration and thawing potential farmland." - the US and Canada have been far more disruptive for climate change global agreements, the Paris agreement was largely stymied by Republican Congress. Permafrost thawing doesn't free up usable farmland in significant amounts, these are still primarily extremely low viability / low human density forestland in Siberia. In fact, Russia is set to lose out significantly from permafrost thaw.

"Solar geoengineering research has clear risks and, given that we cannot deploy it at least for the next 50 years, there is no need to incur these costs now." - this argument doesn't hold weight for AGI research, and I don't think it should for solar geoengineering. SG is highly neglected and as a fraction of CC research is minimal. The research will take decades to filter through to policy and international agreements, so it is worth starting research (not implementing) well before we are forced to use it.

"This would give us at least 20 years to cover the technical details and a governance framework." - A lot of the warming is already locked into the ocean. Giving another 30 years before starting to research will likely be too late. I'm not in favour of implementing solar geoengineering now but researching the viability of these measures now seems to be promising, if not for application then for global security to dissuade rogue actors from implementing the measures with false / incomplete information / encourage preventative policy decisions. This requires fundamental technical research to assess the risks.

"This seems to me like enough time, given that: Solar geoengineering is probably technically feasible with adaptations to various different current technologies." - I'm not sure the current technologies that you are referring to that can be adapted, but the more promising interventions are all much larger scale such as sulfur aerosol injections and have almost no precedent (volcanic eruptions can only tell us so much).

Finally "Another risk of solar geoengineering research is that it will uncover new technologies that could destabilise global civilisation. I discuss weaponisation risks in section 3.2 of my paper. " - As your paper says, current information on SAI indicates that it will take a highly technically adept state actor decades of spending tens of billions of dollars and will still not be a permanent doomsday device (and will be obvious to other states and easily counteracted). All in all I find it difficult to imagine that SAI research will discover something that is easier and cheaper to generate a doomsday device than already exists in a conventional nuclear weapons stockpile. Additionally this doomsday device would also exterminate the user, whereas nuclear weapons can be directed at other states with no immediate, direct blowback (of course the political and social cost and likely retaliation from affiliated states are the reasons why we haven't seen this happen yet). So the implication is that the malicious actor would also have to be suicidal. This doomsday device would also take time to work, which would give time to find a counteraction, and if research inadvertently discovers this application the time to find a solution will be the time from that research until the time of implementation.

Adding to this, currently climate change is projected to be a major stressor on international politics which can exacerbate nuclear X-risk, as well as expanding vectors for natural pandemic risks, among others - so this should also be in consideration when considering if SAI may uncover new X-risks as the baseline p(X-risk) for the coming decades is likely to be a curve rather than flat.

In conclusion the injection of CO2 and methane into the atmosphere may already constitute a moral hazard and dangerous weather manipulation method, and I think that we should be researching (not implementing) potential technical geoengineering solutions in order to prevent the expected outcomes of climate change as well as many other potential (part) solutions (As mentioned by others SAI doesn't reduce CO2 levels and so does nothing for ocean acidification and other related issues). We should evaluate the risks and if (as I expect we will find) them to be too high due to uncertainty, we can use that information to construct international policy around this issue.



comment by Mati_Roy · 2019-04-04T21:02:35.221Z · score: 1 (1 votes) · EA · GW

I added the argument here: https://causeprioritization.org/Geoengineering

comment by SoerenMind · 2019-04-03T13:17:17.766Z · score: 1 (1 votes) · EA · GW

Why not just pay Russia an (arguably fair) reparation?

comment by avturchin · 2019-03-31T11:40:02.508Z · score: -1 (2 votes) · EA · GW

There is a small probability that we are very wrong about climate sensivity and only in this case climate change is an existential risk. The reason for this is not in the climate science, but in the anthropic principle: if our climate is very fragile to the runaway global warming, we can't observe it, as we find ourselves only on planets where it didn't happen.

To fight runaway global warming we need different type of geo-engineering then for the ordinary climate management, as it should be able to provide quicker results for larger climate changes, and also require less research time and may be implemented unilaterally.

I call this type of geoengineering "plan C [EA · GW]". it could be something like artificial effect of nuclear winter, may be started by nuclear explosions in dormant volcanos.