Tactical models to improve institutional decision-making

post by maxime · 2019-01-24T01:24:42.329Z · score: 13 (7 votes) · EA · GW · 3 comments

Contents

  Common positions on policy-making in the community
  Three basic models to inform approaches
    Who to target?
    What to improve?
    When to act?
  Limits of our current knowledge
  Three conclusions
None
3 comments

~ EA Geneva

~ Max, Konrad, and Nora, represented as ‘we’

This post presents reflections on how to improve the work of governments and international organisations. It focuses in particular on the role of institutional decision-making, as this seems to be a concrete and feasible avenue of fostering policymakers’ impact. This post does not try to explain why one should (not) work on improving policy-making.

First of all, we propose that approaching policy-making systematically can be roughly done as follows:

  1. Understand policy-making dynamics
  2. Define tactics to approach policy-making
  3. Implement techniques (e.g. calibration training)
  4. Evaluate impact and feed learnings back to 1-2-3

Jess Whittlestone's post on improving institutional decision-making provides useful high-level approaches:

… which fall under 3. and 4.

Our post complements Whittlestone’s by presenting three models that inform 2. and thus help calibrating an outside actor’s approach to improving institutional decision-making. These models come from the literature review we conducted for forthcoming publications which attempt to cover point 1. of understanding policy-making dynamics.

Preliminary definitions:

Note that it is not generally accepted that institutional decision-making directly leads to the creation of policies. Rather, policies result from a mix of many small day-to-day decisions and executives ones.

Common positions on policy-making in the community

Based on our interactions with EA community members, recent 80,000 Hours publications and podcasts, and the thematic focus of several talks at EA Global conferences in 2017 and 2018, we observe a growing interest in policy-making as a way to make progress on global priorities.

We also found that many EAs tend to make one or more of the following five independent claims when it comes to assessing whether one should work on improving policy-making that we can roughly group into:

  1. the EA community should simply become/hire lobbyists and advocate for global priorities;
  2. policy-making can only be effectively improved from the inside (e.g. take a policymaker job and move up in the hierarchy);
  3. it is risky to work on policy-making now (e.g. due to limited knowledge about policy or idea inoculation);
  4. working on policy-making is intractable or too costly; and/or
  5. policy-making is worth improving as an outside actor to tackle global priorities (even if intractable short-term), but the EA community has little idea how.

We agree with 3 and 5 to a large extent and are unsure about 4. 1 and 2 are certainly relevant strategies but we disagree about their uniqueness. We believe that different people end up with a combination of the five conclusions above because of two cruxes:

  1. ‘improving policy-making’ has high Kolmogorov complexity; and
  2. the community has little knowledge and experience about policy-making.

Some of our work with EA Geneva has been about improving (b) to systematically approach (a).

Three basic models to inform approaches

For an external actor targeting policy-makers to improve their collective decision-making, there are three models we found helpful in thinking about how to allocate one’s limited resources in different techniques to have the best shot at influencing institutional decision-making for the better. To illustrate the three models, suppose the following hypothetical case [1]:

Suppose a small sub-unit that works for the UK’s Department for International Development (DFID) programme on non-communicable diseases eradication in West Africa. Eight individuals - 2 senior policymakers, 1 senior ops, 1 junior staff, 2 consultants and 2 country officers - work together on deciding which diseases to tackle with which interventions (“policy instruments”). It is a two year programme with 2 million dollars of funding and a strong recommendation from DFID’s directors to combine the interventions implementation with ex ante research, evaluations, and an ex post report. Knowing this, both senior policymakers requested the help from 1 consultant to report on the state of evidence on non-communicable diseases in West Africa and 1 consultant on the possible evaluation process. The country officers are meant to provide field expertise, attest (or not) the programme feasibility, and implement the programme. Both senior policymakers write the plan, together with the junior staff. The senior ops handle communications, optimise working process and prepare presentations. The deadline to submit the programme plan is in six months. After this date, the sub-unit hopes to receive green light from the unit director and approvals from country offices and West African States.

Consider also the following:

  1. Both senior policymakers are also involved in other programmes and have very limited time.
  2. Both senior policymakers will progress in their career if the programme is accepted and implemented.
  3. Both consultants will use the same method (for the evidence collection and the evaluation process) as they did a few years ago for a HIV case in South America.
  4. The funding comes from taxes paid by UK citizens.
  5. For a few years now, DFID wants its programmes to tackle systemic root-causes rather than symptoms.

How would one approach the actors’ “institutional decision-making” here?

This is a relatively simple case with clearly defined actors and roles, a well-defined cause, one source of funding, available evidence, and involving micro interventions in selected areas. Policy cases may take much more complicated shapes and involve many more actors of different kinds, i.e. the amendment of a national law in a controversial area by politicians, bureaucrats and the public.

Who to target?

Most policy-networks seem to have a high degree of centrality or pivotal agents (figure 1, Dente 2014, chapter 2), meaning that few organizations or individuals have a disproportionate influence on the decision-making process. These key agents are often also the hardest to engage with and targeting them directly is difficult. One will likely still have to engage a large part of the policy-network to effect change. But keeping in mind who the key agents are is crucial to ensure that efforts do not go to waste due to ignorance of their outsized influence.

Figure 1. Shapes of policy networks

The DFID case illustrates both, the influence of central and pivotal agents. First, both senior policymakers initiate and direct the creation of the programme. They made hiring decisions and will be the main point of contact for the programme. Due to their place in the hierarchy and responsibilities, their decisions will influence the programme to a larger extent than the junior staff, the ops staff, or both consultants. This argument is valid for the six months of programme design.

Second, after the six months, pivotal agents play a crucial role. Here, the unit director and country officers make the final decision through approval/refusal.

In this case, targeting senior policymakers, the director and country officers is probably the best strategy. In other words, a rule of thumb is “as many agents as possible among the few most influential ones”.

What to improve?

Decision-making is likely to vary across contexts and take different forms. The Stacey diagram (figure 2 from Geyer and Rihani 2010) helps to map out these different forms as a function of levels of agreement and certainty.

Figure 2. A Stacey Diagram

Some issues are technical, backed by strong evidence and widely supported by stakeholders (‘rational decision-making’). Other issues may be less prone to agreement (‘political decision-making’) or can be less informed by further information (‘judgemental decision-making’).

When stakeholders refuse to interact or disagree and there is no information to inform decision-making, then decision-makers face chaotic situations with decisions entailing unpredictable outcomes (‘chaos’).

The literature suggests that most of policy decisions happen somewhere between these four areas: decision-making under partial agreement and partial certainty (‘complex decision-making’).

This suggests the need for a combination of strategies to decide which techniques must be implemented (matrix 1).

Matrix 1: strategies to improve collective ‘complex’ decision-making

The DFID case is characterised by uncertainty that can be reduced through ex ante research and an unclear level of agreement shared by the sub-unit, the unit director, country officers and West African States. However, since DFID emphasises the need to tackle systemic causes the significant uncertainty will likely remain because of complex research questions and methodological challenges to produce generalizable evidence on systemic causes. So the unit can benefit from support to reduce uncertainty to a limited extent and to deal with the remaining uncertainty in an intelligible manner (e.g. learn how to state it explicitly and to factor it in expected impact calculation).

Here, the level of agreement probably depends on other variables. In the case of West African States’ being strongly against any programme on non-communicable diseases on their territory, then country officers and States might strongly disagree with the proposal of the sub-unit. A higher level of agreement could potentially be achieved through a more direct involvement of West African States in the programme development.

When to act?

The timing drastically changes how one can affect the decision-making process (figure 3). Understanding windows of opportunity, a time period during which a larger share of decisions can be affected, is crucial (see for example Birkland 1997).

Figure 3. Possible window of opportunity dynamics

Before a window of opportunity (a), one can possibly equip decision-makers with skills and tools to make better decisions once the window occurs.

During a window of opportunity (b), a network can become crowded very quickly and unless one has built exceptional relationships, it is hard to affect change. Nonetheless, it is the time during which evidence can be provided in a timely manner, and political agendas play an important role.

After a window of opportunity (c), the crowdedness of a policy domain often only recedes slowly due to the previously concerted momentum leading up to a decision. The period after a window of opportunity can allow for decision-making support for the implementation of decisions or the preparation for the next window.

Policy agendas generally are fairly stable and drastic changes happen rarely (see for example Jones et al. 2009). The re-assessment of annual budgets or the periods when agendas are being set are possible windows of opportunity. For example, a window of opportunity opened when the Millenium Development Goals were re-discussed and it closed when the Sustainable Development Goals agenda was decided. Another example is the forthcoming replacement of the European Commission’s Horizon 2020 strategy.

The DFID case suggests a window of opportunity of 6 months, i.e. the time period during which the programme can be created. These 6 months also become more crowded (+ 2 consultants). Therefore, in this case, an outside actor may support decision-making with additional (counter-)evidence or by advocating for specific non-communicable diseases and special policy instruments.

If one has access to the two senior policymakers before this window of opportunity, then one could, for example, provide calibration training, sensitisation to Bayesian thinking, or other techniques. If one has access only after this window of opportunity, then one could support the evaluation procedure and ensure that learnings are reported and will influence the programme in the future.

Limits of our current knowledge

Our epistemic status on the usefulness of the three models across contexts is low because:

However, we do find them useful because:

There are further limits to our knowledge that we deem important to address in the future (illustrated by the hypothetical DFID case):

We believe that the EA community can benefit a lot from progressing on these questions.

Three conclusions

  1. Improving institutional decision-making has many moving parts. We presented some preliminary tactical models to approach it strategically. We could not aim to be exhaustive.
  2. We are unsure about their validity and usefulness beyond the important questions they raise. We would really appreciate feedback.
  3. We believe that working on policy as an outside actor currently involves the reduction of uncertainties and risks through knowledge acquisition. We will publish a research agenda on improving policy-making here in March 2019.

[1] We chose a hypothetical over a real case because we make normative claims further in the blog post. We also chose to select an area that is not part of EA current priorities to avoid talking about the case too much, but to discuss the approach to improving the decision-making process. We decided to choose a relatively simple case to illustrate the models instead of a more complex case to avoid having to oversimplify applications of models or overcrowd this post with complications.

3 comments

Comments sorted by top scores.

comment by weeatquince · 2019-01-13T23:43:49.160Z · score: 3 (2 votes) · EA · GW

I found this article unclear about what you were talking about when you say "improving institutional decision making" (in policy). I think we can break this down into two very different things.

A: Improving improving the decision making processes and systems of accountability that policy institutions use to make decisions so that these institutions will more generally be better decision makers. (This is what I have always meant by and understood by the term "improving institutional decision making", and what JEss talks about in her post you link to)

B: Having influence in a specific situation on the policy making process. (This is basically what people tend to call "lobbying" or sometimes "campaigning".)

I felt that the DFID story and the three models were all focused on B: lobbying. The models were useful for thinking about how to do B well (assuming you know better than the policy makers what policy should be made). Theoretical advice on lobbying is a nice thing to have* if you are in the field (so thank you for writing them up, I may give them some thought in my upcoming work). And if you are trying to change A it would be useful to understand how to do B.

The models were very useful for advising on how to do A: improving how institutions work generally. And A is where I would say the value lies.

I think the main point is just on how easy the article was to read. I found the article itself was very confusing as to if you were talking about A or B at many points.

*Also in general I think the field of lobbying is as one might say "more of an art than a science" and although a theoretical understanding of how it works is nice it is not super useful comapred to experience in the field in the specific country that you are in.

comment by Michael_Wiebe · 2019-01-11T20:32:07.680Z · score: 2 (2 votes) · EA · GW

This post gives a nice framework, but the article should be half as long.

Also, I wonder how much can be learned from an abstract understanding here. Consider economists studying firms: they can learn some general principles, but they're not in a position to go run a business ("if you're so smart, why aren't you rich?"). Similarly, my prior is that studying institutional decision-making is not going to produce actionable knowledge that can be used in the real world. That would require learning about the specific problems facing (say) DFID.

comment by Gentzel · 2019-01-10T16:53:16.424Z · score: 2 (2 votes) · EA · GW

Given the time it takes to form relationships with nodes in decision making networks, and the difficulty of reducing uncertainty from the outside, at some point it makes sense to either aim people at such jobs or to make friends with people in them. That lobbying and working in government aren't unique tactics or roles in society doesn't matter if they are neglected by those who are capable of pursuing similar goals: different organizations compete for influence in different directions. Early investment to enable direct interaction with decision making networks can be how you get the "when" right, figure out "who" to target, and sometimes even figure out the "what to improve" by seeing what is going wrong in the first place.

If an outside organization only does outside research and competitors invest more in making internal connections, the competitors gain advantage and influence with time. Even if one gains a more objective perspective by looking in from the outside and avoiding political fights, a lot of the most valuable information for decision making is going to be internal. This failure mode leads to forms of naivety that are persistent: external actors can see things that clearly look like mistakes, by actors with biases that are obvious to outsiders, and then conclude more confidently than is justified that their own views are correct.