Some personal thoughts on EA and systemic change 2019-09-26T21:40:28.725Z
Risk-neutral donors should plan to make bets at the margin at least as well as giga-donors in expectation 2016-12-31T02:19:35.457Z
Donor lotteries: demonstration and FAQ 2016-12-07T13:07:26.306Z
The age distribution of GiveWell recommended charities 2015-12-26T18:35:44.511Z
A Long-run perspective on strategic cause selection and philanthropy 2013-11-05T23:08:35.000Z


Comment by CarlShulman on Economic policy in poor countries · 2021-08-17T18:00:11.281Z · EA · GW


Comment by CarlShulman on Towards a Weaker Longtermism · 2021-08-17T17:55:17.853Z · EA · GW

FWIW, my own views are more like 'regular longtermism' than 'strong longtermism,' and I would agree with Toby that existential risk should be a global priority, not the global priority. I've focused my career on reducing existential risk, particularly from AI, because it seems like a substantial chance of happening in my lifetime, with enormous stakes and extremely neglected. I probably wouldn't have gotten into it when I did if I didn't think doing so was much more effective than GiveWell top charities at saving current human lives, and outperforming even more on metrics like cost-benefit in $.

Longtermism as such (as one of several moral views commanding weight for me) plays the largest role for things like refuges that would prevent extinction but not catastrophic disaster, or leaving seed vaults and knowledge for apocalypse survivors. And I would say longtermism provides good reason to make at least modest sacrifices for that sort of thing (much more than the ~0 current world effort), but not extreme fanatical ones.

There are definitely some people who are fanatical strong longtermists, but a lot of people who are made out to be such treat it as an important consideration but not one held with certainty or overwhelming dominance over all other moral frames  and considerations. In my experience one cause of this is that if you write about implications within a particular worldview people assume you place 100% weight on it, when the correlation is a lot less than 1. 

I see the same thing happening with Nick Bostrom, e.g. his old Astronomical Waste article explicitly  explores things from a totalist view where existential risk dominates via long-term effects, but also from a person-affecting view where it is balanced strongly by other considerations like speed of development. In Superintelligence he explicitly prefers not making drastic sacrifices of existing people for tiny proportional (but immense absolute) gains to future generations, while also saying that the future generations are neglected and a big deal in expectation.


Comment by CarlShulman on Economic policy in poor countries · 2021-08-08T01:15:33.048Z · EA · GW

Alexander Berger discusses this at length in a recent 80,000 Hours podcast interview with Rob Wiblin.

Comment by CarlShulman on What grants has Carl Shulman's discretionary fund made? · 2021-07-14T04:09:08.604Z · EA · GW

Last update is that they are, although there were coronavirus related delays.

Comment by CarlShulman on [Meta] Is it legitimate to ask people to upvote posts on this forum? · 2021-06-29T18:43:59.401Z · EA · GW

I would say no, with no exceptions.

Comment by CarlShulman on What is an example of recent, tangible progress in AI safety research? · 2021-06-15T04:11:06.981Z · EA · GW

Focusing on empirical results:

Learning to summarize  from human feedback was good, for several reasons.

I liked the recent paper empirically demonstrating objective robustness failures hypothesized in earlier theoretical work on inner alignment.


Comment by CarlShulman on Help me find the crux between EA/XR and Progress Studies · 2021-06-04T07:27:34.302Z · EA · GW

Side note:  Bostrom does not hold or argue for 100% weight on total utilitarianism such as to take overwhelming losses on other views for tiny gains on total utilitarian stances. In Superintelligence he specifically rejects an example extreme tradeoff of that magnitude (not reserving one galaxy's worth of resources out of millions for humanity/existing beings even if posthumans would derive more wellbeing from a given unit of resources).

I also wouldn't actually accept a 10 million year delay in tech progress (and the death of all existing beings who would otherwise have enjoyed extended lives from advanced tech, etc) for a 0.001% reduction in existential risk.

Comment by CarlShulman on Help me find the crux between EA/XR and Progress Studies · 2021-06-04T07:15:22.936Z · EA · GW

By that token most particular scientific experiments or contributions to political efforts may be such: e.g. if there is a referendum to pass a pro-innovation regulatory reform and science funding package, a given donation or staffer in support of it is very unlikely to counterfactually tip it into passing, although the expected value and average returns could be high, and the collective effort has a large chance of success.

Comment by CarlShulman on Help me find the crux between EA/XR and Progress Studies · 2021-06-04T07:12:05.835Z · EA · GW

Your 3 items cover good+top priority, good+not top priority, and bad+top priority, but not #4, bad+not top priority.

I think people concerned with x-risk generally think that progress studies as a program of intervention to expedite growth is going to have less expected impact (good or bad) on the history of the world per unit of effort, and if we condition on people thinking progress studies does more harm than good, then mostly they'll say it's not important enough to focus on arguing against at the current margin (as opposed to directly targeting urgent threats to the world). Only a small portion of generalized economic expansion will go to the most harmful activities (and damage there comes from expediting dangerous technologies in AI and bioweapons that we are improving in our ability to handle, so that delay would help) or to efforts to avert disaster, so there is much more leverage focusing narrowly on the most important areas. 

With respect to synthetic biology in particular, I think there is a good case for delay: right now the capacity to kill most of the world's population with bioweapons is not available in known technologies (although huge secret bioweapons programs like the old Soviet one may have developed dangerous things already), and if that capacity is delayed there is a chance it will be averted or much easier to defend against via AI, universal sequencing, and improvements in defenses and law enforcement. This is even moreso for those sub-areas that most expand bioweapon risk. That said, any attempt to discourage dangerous bioweapon-enabling research must compete against other interventions (improved lab safety, treaty support, law enforcement, countermeasure platforms, etc), and so would have to itself be narrowly targeted and leveraged. 

With respect to artificial intelligence, views on sign vary depending on whether one thinks the risk of an AI transition is getting better or worse over time (better because of developments in areas like AI alignment and transparency research, field-building, etc; or worse because of societal or geopolitical changes). Generally though people concerned with AI risk think it much more effective to fund efforts to find alignment solutions and improved policy responses (growing them from a very small base, so cost-effectiveness is relatively high) than a diffuse and ineffective effort to slow the technology (especially in a competitive world where the technology would be developed elsewhere, perhaps with higher transition risk).

For most other areas of technology and economic activity (e.g. energy, agriculture, most areas of medicine) x-risk/longtermist implications are comparatively small, suggesting a more neartermist evaluative lens (e.g. comparing more against things like GiveWell).

Long-lasting (centuries) stagnation is a risk worth taking seriously (and the slowdown of population growth that sustained superexponential growth through history until recently points to stagnation absent something like AI to ease the labor bottleneck), but seems a lot less likely than other x-risk. If you think AGI is likely this century then we will return to the superexponential track (but more explosively) and approach technological limits to exponential growth followed by polynomial expansion in space. Absent AGI or catastrophic risk (although stagnation with advanced WMD would increase such risk), permanent stagnation also looks unlikely based on the capacities of current technology given time for population to grow and reach frontier productivity.

I think the best case for progress studies being top priority would be strong focus on the current generation compared to all future generations combined, on rich country citizens vs the global poor, inhabit and on technological progress over the next few decades, rather than in 2121. But given my estimates of catastrophic risk and sense of the interventions, at the current margin I'd still think that reducing AI and biorisk do better for current people than the progress studies agenda per unit of effort.

I wouldn't support arbitrary huge sacrifices of the current generation to reduce tiny increments of x-risk, but at the current level of neglectedness and impact (for both current and future generations) averting AI and bio catastrophe  looks more impactful without extreme valuations. As such risk reduction efforts scale up marginal returns would fall and growth boosting interventions would become more competitive (with a big penalty for those couple of areas that disproportionately pose x-risk).

That said, understanding tech progress, returns to R&D, and similar issues also comes up in trying to model and influence the world in assorted ways (e.g. it's important in understanding AI risk, or building technological countermeasures to risks to long term development). I have done a fair amount of investigation that would fit into progress studies as an intellectual enterprise for such purposes.

I also lend my assistance to some neartermist EAresearch focused on growth, in areas that don't very disproportionately increase x-risk, and to development of technologies that make it more likely things will go better.

Comment by CarlShulman on My attempt to think about AI timelines · 2021-05-20T03:44:38.239Z · EA · GW

Robin Hanson argues in Age of Em  that annualized  growth rates will reach over 400,000% as a result of automation of human labor with full substitutes (e.g. through brain emulations)! He's a weird citation for thinking the same technology can't manage 20% growth.

"I really don't have strong arguments here. I guess partly from experience working on an automated trading system (i.e. actually trying to automate something)"

This and the usual economist arguments against fast AGI growth  seem to be more about denying the premise of ever succeeding at AGI/automating human substitute minds (by extrapolation from a world where we have not yet built human substitutes to conclude they won't be produced in the future), rather than addressing the growth that can then be enabled by the resulting AI.

Comment by CarlShulman on My attempt to think about AI timelines · 2021-05-19T18:25:02.238Z · EA · GW

I find that 57% very difficult to believe. 10% would be a stretch. 

Having intelligent labor that can be quickly produced in factories (by companies that have been able to increase output by  millions of times over decades), and do tasks including improving the efficiency of robots (already cheap relative to humans where we have the AI to direct them, and that before reaping economies of scale by producing billions) and solar panels (which already have energy payback times on the order of 1 year in sunny areas), along with still abundant untapped energy resources orders of magnitude greater than our current civilization taps on Earth (and a billionfold for the Solar System) makes it very difficult to make the AGI but no TAI world coherent.

Cyanobacteria can double in 6-12 hours under good conditions, mice can grow their population more than 10,000x in a year. So machinery can be made to replicate quickly, and trillions of von Neumann equivalent researcher-years (but with AI advantages) can move us further towards that from existing technology.
I predict that cashing out the given reasons into detailed descriptions will result in inconsistencies or very implausible requirements.

Comment by CarlShulman on Why AI is Harder Than We Think - Melanie Mitchell · 2021-05-03T17:10:49.102Z · EA · GW

She does talk about century plus timelines here and there.

Comment by CarlShulman on How do you compare human and animal suffering? · 2021-04-30T20:41:40.098Z · EA · GW

I suspect there are biases in the EA conversation where hedonistic-compatible arguments get discussed more than reasons that hedonistic utilitarians would be upset by, and intuitions coming from other areas may then lead to demand and supply subsidies for such arguments.

Comment by CarlShulman on How do you compare human and animal suffering? · 2021-04-30T02:13:51.595Z · EA · GW

"I would guess most arguments for global health and poverty over animal welfare fall under the following:

- animals are not conscious or less conscious than humans
- animals suffer less than humans


I'm pretty skeptical that these arguments descriptively  account for most of the people explicitly choosing global poverty interventions over animal welfare interventions, although they certainly account for some people. Polls show  wide agreement that birds and mammals are conscious and have welfare to at least some degree. And I think most models on which degree of consciousness (in at least some senses) varies greatly, it's not so greatly that one would say that, e.g. it's more expensive to improve consciousness-adjusted welfare in chickens than humans today. And I say that as someone who thinks it pretty plausible that there are important orders-of-magnitude differences in quantitative aspects of consciousness. 

I'd say descriptively the bigger thing is people just feeling more emotional/moral obligations to humans than other animals, not thinking human welfare varies a millionfold more, in the same way that people who choose to 'donate locally' in rich communities where cost to save a life is hundreds of times greater than abroad don't think that poor foreigners are a thousand times less conscious, even as they tradeoff charitable options as though weighting locals hundreds of times more than foreigners.

An explicit philosophical articulation of this is found in Shelly Kagan's book on weighing the interests of different animals. While even on Kagan's view factory farming is very bad, he describes a view that assigns greater importance of interests of a given strength for beings with more of certain psychological properties (or counterfactual potential for those properties). The philosopher Mary Anne Warren articulates something similar in her book on moral status, which assigns increasing moral status on the basis of a number of grounds including life (possessed by plants and bacteria, and calling for some status), consciousness, capacity to engage in reciprocal social relations, actual relationships, moral understanding, readinesss to forbear in mutual cooperation, various powers, etc.

I predict that if you polled philosophers on cases involving helping different numbers of various animals, those sorts of accounts would be more frequent explanations of the results than doubt about animal consciousness (as a binary or quantitative scale).

This would be pretty susceptible to polling, e.g. you could ask the EA Survey team to try some questions on it (maybe for a random subset). 

Comment by CarlShulman on What grants has Carl Shulman's discretionary fund made? · 2021-04-02T20:54:55.471Z · EA · GW

Not particularly.

Comment by CarlShulman on What grants has Carl Shulman's discretionary fund made? · 2021-03-12T15:37:58.545Z · EA · GW

Hi Milan,

So far it has been used to back the donor lottery (this has no net $ outlay in expectation, but requires funds to fill out each block and handle million dollars swings up and down), make a grant to  ALLFED, fund Rethink Priorities' work on nuclear war,  and small seed funds for some researchers investing two implausible but consequential if true interventions (including the claim that creatine supplements boost cognitive performance for vegetarians).

Mostly it remains invested. In  practice I have mostly been able to recommend major grants to other funders so this fund is used when no other route is more appealing. Grants have often involved special circumstances or  restricted funding, and the grants it has made should not be taken as recommendations to other donors to donate to the same things at the current margin in their circumstances.


Comment by CarlShulman on The Upper Limit of Value · 2021-01-28T14:21:25.749Z · EA · GW

There is some effect in this direction, but not a sudden cliff. There is plenty of room to generalize, not an in. We create models of alternative coherent lawlike realities, e.g. the Game of Life or and physicists interested in modeling different physical laws. 

Comment by CarlShulman on The Upper Limit of Value · 2021-01-27T22:37:56.319Z · EA · GW

Thanks David, this looks like a handy paper! 

Given all of this, we'd love feedback and discussion, either as comments here, or as emails, etc.

I don't agree with the argument that infinite impacts of our choices are of Pascalian improbability, in fact I think we probably face them as a consequence of one-boxing decision theory, and some of the more plausible routes to local infinite impact are missing from the paper:

  • The decision theory section misses the simplest argument for infinite value: in an infinite inflationary universe with infinite copies of me, then my choices are multiplied infinitely. If I would one-box on Newcomb's Problem, then I would take the difference between eating the sandwich and not to be scaled out infinitely. I think this argument is in fact correct and follows from our current cosmological models combine with one-boxing decision theories.
  • Under 'rejecting physics' I didn't see any mention of baby universes, e.g. Lee Smolin's cosmological natural selection. If that picture were right, or anything else in which we can affect the occurrence of new universes/inflationary bubbles forming, then that would permit infinite impacts.
  • The simulation hypothesis is a plausible way for our physics models to be quite wrong about the world in which the simulation is conducted, and further there would be reason to think simulations would be disproportionately conducted under physical laws that are especially conducive to abundant computation
Comment by CarlShulman on Can I have impact if I’m average? · 2021-01-03T15:24:46.896Z · EA · GW

Here are two posts from Wei Dai, discussing the case for some things in this vicinity (renormalizing in light of the opportunities):

Comment by CarlShulman on What is the likelihood that civilizational collapse would directly lead to human extinction (within decades)? · 2020-12-26T20:45:20.266Z · EA · GW

Thanks for this detailed post on an underdiscussed topic!  I agree with the broad conclusion that extinction via partial population collapse and infrastructure loss, rather than by the mechanism of catastrophe being potent  enough to leave no or almost no survivors (or indirectly enabling some  later extinction level event) has very low probability.  Some comments:

  • Regarding case 1, with a pandemic leaving 50% of the population dead but no major infrastructure damage, I think you can make much stronger claims about there not being 'civilization collapse' meaning near-total failure of industrial food, water, and power systems. Indeed, collapse so defined from that stimulus seems nonsensical to me for rich quantitative reasons.
    • There is no WMD war here, otherwise there would be major infrastructure damage.
    • If half of people are dead, that cuts the need for food and water by half (doubling per capita stockpiles), while already planted calorie-rich crops can easily be harvested with a half-size workforce.
    • Today agriculture makes up closer to 5% than 10% of the world economy, and most of that effort is expended on luxuries such as animal agriculture, expensive fruits, avoidable food waste, and other things that aren't efficient ways to produce nutrition.  Adding all energy (again, most of which is not needed for basic survival as opposed to luxuries) brings the total to ~15%, and perhaps 5% on necessities (2.5% for half production for half population).  That leaves a vast surplus workforce.
    • The catastrophe doubles resources of easily accessible fossil fuels and high quality agricultural land per surviving person, so just continuing to run the best 50% of farmland and the best 50% of oil wells means an increase in food and fossil fuels per person.
    • Likewise, there is a surplus of agricultural equipment, power plants, water treatment plants, and operating the better half of them with the surviving half of the population could improve per capita availability.  These plants are parallel and independent enough that running half of them would not collapse productivity, which we can confirm by looking back to when there were half as many, etc.
    • Average hours worked per capita is already at historical lows, leaving plenty of room for trained survivors to work longer shifts while people switch over from other fields and retrain
    • Historical plagues such as the Black Death or smallpox in the Americas did not cause a breakdown of food production per capita for the survivors.
    • Historical wartime production changes show enormous and adequate flexibility in production.
  • Re the likelihood of survival without industrial agriculture systems, the benchmark should be something closer to preindustrial European agriculture, not hunter-gatherers. You discuss this but it would be helpful to put more specific credences on those alternatives.
    • The productivity of organic agriculture is still enormously high relative to hunting and gathering.
    • Basic knowledge about crop rotation, access to improved and global crop varieties such as potatoes, ploughs, etc permitted very high population density before industrial agriculture, with very localized supply chains.  One can see this in colonial agricultural communities which could be largely self-sustaining (mines for metal tools being one of the worst supply constraints, but fine in a world where so much metal has already been mined and is just sitting around for reuse).
    • By the same token, talking about 'at least 10%' of 1-2 billion subsistence farmers continuing agriculture is a very low figure.  I assume it is a fairly extreme lower bound, but it would be helpful to put credences on lower bounds and to help distinguish them from more likely possibilities.
  • Re food stockpiles:
    • "I’m ignoring animal agriculture and cannibalism, in part because without a functioning agriculture system, it’s not clear to me whether enough people would be able to consume living beings."
      • Existing herds of farmed animals would likely be killed and eaten/preserved.
        • If transport networks are crippled, then this could be for local consumption, but that would increase food inequality and likelihood of survival in dire situations
      • There are about 1 billion cattle alone, with several hundred kg of edible mass each, plus about a billion sheep,  ~700 million pigs, and 450 million goats.
      • In combination these could account for hundreds of billions of human-days of nutritional requirements (I think these make up a large share of 'global food stocks' in your table of supplies)
    • Already planted crops ready to harvest constitute a huge stockpile for the scenarios without infrastructure damage.
    • Particularly for severe population declines, fishing is limited by fish supplies, and existing fishing boats capture and kill vast quantities of fishes in days when short  fishing seasons open.  If the oceans are not damaged, this provides immense food resources to any survivors with modern fishing knowledge and some surviving fishing equipment.
  • "But if it did, I expect that the ~4 billion survivors would shrink to a group of 10–100 million survivors during a period of violent competition for surviving goods in grocery stores/distribution centers, food stocks, and fresh water sources."
  • "So what, concretely, do I think would happen in the event of a catastrophe like a “moderate” pandemic — one that killed 50% of people, but didn’t cause infrastructure damage or climate change? My best guess is that civilization wouldn’t actually collapse everywhere. But if it did, I expect that the ~4 billion survivors would shrink to a group of 10–100 million survivors during a period of violent competition for surviving goods in grocery stores/distribution centers, food stocks, and fresh water sources."
    • For the reasons discussed above I strongly disagree with the claim after "I expect."
  • "All this in mind, I think it is very likely that the survivors would be able to learn enough during the grace period to be able to feed and shelter themselves ~indefinitely."
    • I would say the probability should be higher here.
  • Regarding radioactive fallout, an additional factor not discussed is the decline of fallout danger over time: lethal areas are quite different over the first week vs the first year, etc.
  • Re Scenario 2: "Given all of this, my subjective judgment is that it’s very unlikely that this scenario would more or less directly lead to human extinction" I would again say this is even less likely.
  • In general I think extinction probability from WMD war is going to be concentrated in the plausible future case of greatly increased/deadlier arsenals: millions of nuclear weapons rather than thousands, enormous and varied bioweapons arsenals, and billions of anti-population hunter-killer robotic drones slaughtering survivors including those in bunkers, all released in the same conflict.
  • "Given this, I think it’s fairly likely, though far from guaranteed, that a catastrophe that caused 99.99% population loss, infrastructure damage, and climate change (e.g. a megacatastrohe, like a global war where biological weapons and nuclear weapons were used) would more or less directly cause human extinction."
    • This seems like a sign error, differing from your earlier and later conclusions?
    • "I think it’s fairly unlikely that humanity would go extinct as a direct result of a catastrophe that caused the deaths of 99.99% of people (leaving 800 thousand survivors), extensive infrastructure damage, and temporary climate change (e.g. a more severe nuclear winter/asteroid impact, plus the use of biological weapons)."


Comment by CarlShulman on Longtermism which doesn't care about Extinction - Implications of Benatar's asymmetry between pain and pleasure · 2020-12-20T14:36:15.699Z · EA · GW

It sounds like you're assuming a common scale between the theories (maximizing expected choice-worthiness)).

A common scale isn't necessary for my conclusion (I think you're substituting it for a stronger claim?)  and  I didn't invoke it. As I wrote in my comment, on negative utilitarianism s-risks that are many orders of magnitude smaller than worse ones without correspondingly huge differences in probability  get ignored for the latter. On variance normalization, or bargaining solutions, or a variety of methods that don't amount to dictatorship of one theory, the weight for an NU view is not going to spend its decision-influence on the former rather than the latter when they're both non-vanishing possibilities.

I would think something more like your hellish example + billions of times more happy people would be more illustrative. Some EAs working on s-risks do hold lexical views.

Sure (which will make the s-risk definition even more inapt for those people), and those scenarios will be approximately ignored vs scenarios that are more like 1/100 or 1/1000 being tortured on a lexical view, so there will still be the same problem of s-risk not tracking what's action-guiding or a big deal in the history of suffering.

Comment by CarlShulman on Longtermism which doesn't care about Extinction - Implications of Benatar's asymmetry between pain and pleasure · 2020-12-20T04:25:51.237Z · EA · GW

Just a clarification: s-risks (risks of astronomical suffering) are existential risks. 

This is not true by the definitions given in the original works that defined these terms. Existential risk is defined to only refer to things that are drastic relative to the potential of Earth-originating intelligent life:

where an adverse outcome would either annihilate Earth-originating intelligent life or permanently and drastically curtail its potential.

Any X-risks are going to be in the same ballpark of importance if they occur, and immensely important to the history of Earth-originating life. Any x-risk is a big deal relative to that future potential.

S-risk is defined as just any case where there's vastly more total suffering than Earth history heretofore, not one where suffering is substantial relative to the downside potential of the future.

S-risks are events that would bring about suffering on an astronomical scale, vastly exceeding all suffering that has existed on Earth so far.

 In an intergalactic civilization making heavy use of most stars, that would be met by situations where things are largely utopian but  1 in 100 billion people per year get a headache, or a hell where everyone was tortured all the time.  These are both defined as s-risks, but the bad elements in the former are microscopic compared to the latter, or the expected value of suffering.  

With even a tiny weight on views valuing good parts of future civilization the former could be an extremely good world, while the latter would be a disaster by any reasonable mixture of views. Even with a fanatical restriction to only consider suffering and not any other moral concerns, the badness  of the former should be almost completely ignored relative to the latter if there is non-negligible credence assigned to both.

 So while x-risks are all critical for civilization's upside potential if they occur, almost all s-risks will be incredibly small relative to the potential for suffering, and something  being an s-risk doesn't mean its occurrence would be an important part of the history of suffering if both have non-vanishing credence.

From the s-risk paper:

We should differentiate between existential risks (i.e., risks of “mere” extinction or failed potential) and risks of astronomical suffering1(“suffering risks” or “s-risks”). S-risks are events that would bring about suffering on an astronomical scale, vastly exceeding all suffering that has existed on Earth so far.

The above distinctions are all the more important because the term “existential risk” has often been used interchangeably with “risks of extinction”, omitting any reference to the future’s quality.2 Finally, some futures may contain both vast amounts of happiness and vast amounts of suffering, which constitutes an s-risk but not necessarily a (severe) x-risk. For instance, an event that would create 1025 unhappy beings in a future that already contains 1035 happy individuals constitutes an s-risk, but not an x-risk.

If one were to make an analog to the definition of s-risk for loss of civilization's potential it would be something like risks of loss of potential welfare or goods much larger than seen on Earth so far. So it would be a risk of this type to delay interstellar colonization by a few minutes and colonize one less  star system. But such 'nano-x-risks' would have almost none of the claim to importance and attention that comes with the original definition of x-risk. Going from 10^20 star systems to 10^20 star systems less one should not be put in the same bucket as premature extinction or going from 10^20 to 10^9. So long as one does not have a completely fanatical view and gives some weight to different perspectives, longtermist views concerned with realizing civilization's potential should give way on such minor proportional differences to satisfy other moral concerns, even though the absolute scales are larger.

Bostrom's Astronomical Waste paper specifically discusses such things, but argues since their impact would be so small relative to existential risk they should not be a priority (at least in utilitarianish terms)  relative to the latter.

This disanalogy between the x-risk and s-risk definitions is a source of ongoing frustration to me, as s-risk discourse thus often conflates hellish futures (which are existential risks, and especially bad ones), or possibilities of suffering on a scale significant relative to the potential for suffering (or what we might expect), with bad events many orders of magnitude smaller or futures that are utopian by common sense standards and compared to our world or the downside potential.

I wish people interested in s-risks that are actually near worst-case scenarios, or that are large relative to the background potential or expectation for downside would use a different word or definition, that would make it possible to say things like 'people broadly agree that a future constituting an s-risk is a bad one, and not a utopia' or at least  'the occurrence of an s-risk is of the highest importance for the history of suffering.' 

Comment by CarlShulman on We're Lincoln Quirk & Ben Kuhn from Wave, AMA! · 2020-12-19T02:14:51.475Z · EA · GW

$1B commitment attributed to Musk early on is different from the later Microsoft investment. The former went away despite the media hoopla.

Comment by CarlShulman on CEA's 2020 Annual Review · 2020-12-11T17:51:33.193Z · EA · GW

It's invested in unleveraged index funds, but was out of the market for the pandemic crash and bought in at the bottom. Because it's held with Vanguard as a charity account it's not easy to invest as aggressively as I do my personal funds for donation, in light of lower risk-aversion for altruistic investors than those investing for personal consumption, although I am exploring options in that area.

The fund has been used to finance the CEA donor lottery, and to make grants to ALLFED and Rethink Charity (for nuclear war research). However, it should be noted that I only recommend grants for the fund that I think aren't a better fit for other funding sources I can make recommendations to, and often with special circumstances or restricted funding, and grants it has made should not be taken as recommendations from me to other donors to donate to the same things at the margin. [For the object-level grants, although using donor lotteries is generally sensible for a wide variety of donation views.] 

Comment by CarlShulman on If Causes Differ Astronomically in Cost-Effectiveness, Then Personal Fit In Career Choice Is Unimportant · 2020-11-24T02:00:20.551Z · EA · GW

Longtermists sometimes argue that some causes matter extraordinarily more than others—not just thousands of times more, but 10^30 or 10^40 times more. 

I don't think any major EA or longtermist institution believes this about expected impact for 10^30 differences. There are too many spillovers for that, e.g. if doubling the world economy of $100 trillion/yr would modestly shift x-risk or the fate of wild animals, then interventions that affect economic activity have to have expected absolute value of impact much greater than 10^-30 of the most expected impactful interventions.

This argument requires that causes differ astronomically in relative cost-effectiveness. If causes A is astronomically better than cause B in absolute terms, but cause B is 50% as good in relative terms, then it makes sense for me to take a job in cause B if I can be at least twice as productive.

I suspect that causes don't differ astronomically in cost-effectiveness. Therefore, people should pay attention to personal fit when choosing an altruistic career, and not just the importance of the cause.

The premises and conclusion don't seem to match here. A difference of 10^30x is crazy, but rejecting that doesn't mean you don't have huge practical differences in impact like 100x or 1000x. Those would be plenty to come close to maxing out the possible effect of differences between causes(since if you're 1000x as good at rich-country homelessness relief as preventing  pandemics, then if nothing else your fame for rich country poverty relief would be a powerful resource to help out in other areas like public endorsements of good anti-pandemic efforts).

The argument seems sort of like "some people say if you go into careers like quant trading you'll make 10^30 dollars and can spend over a million dollars to help each animal with a nervous system. But actually you can't make that much money even as a quant trader, so people should pay attention to fit with different careers in the world when trying to make money, since you can make more money in a field with half the compensation per unit productivity if you are twice as productive there." The range for realistic large differences in compensation between fields (e.g. fast food cashier vs quant trading) is missing from the discussion.

You define astronomical differences at the start as 'not just thousands of times more' but the range to thousands of times more is where all the action is.

Comment by CarlShulman on Thoughts on whether we're living at the most influential time in history · 2020-11-15T17:48:20.603Z · EA · GW

It's the time when people are most influential per person or per resource.

Comment by CarlShulman on Thoughts on whether we're living at the most influential time in history · 2020-11-15T17:38:15.540Z · EA · GW

This seems important to me because, for someone claiming that we should think that we're at the HoH, the update on the basis of earliness is doing much more work than updates on the basis of, say, familiar arguments about when AGI is coming and what will happen when it does.  To me at least, that's a striking fact and wouldn't have been obvious before I started thinking about these things.

It seems to me the object level is where the action is, and the non-simulation Doomsday Arguments mostly raise a phantom consideration that cancels out (in particular, cancelling out re whether there is an influenceable lock-in event this century).

You could say a similar thing about our being humans rather than bacteria, which cumulatively outnumber us by more than 1,000,000,000,000,000,000,000,000  times on Earth thus far according to the paleontologists. 

Or you could go further and ask why we aren't neutrinos? There are more than 1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 of them in the observable universe.

However extravagant the class you pick, it's cancelled out by the knowledge that we find ourselves in our current situation.  I think it's more confusing than helpful to say that our being humans rather than neutrinos is doing more than 10^70 times as much work as object-level analysis of AI in the case for attending to x-risk/lock-in with AI. You didn't need to think about that in the first place to understand AI or bioweapons, it was an irrelevant distraction.

The same is true for future populations that know they're living in intergalactic societies and the like. If we compare possible world A, where future Dyson spheres can handle a population  of P (who know they're in  that era), and possible world B, where future Dyson spheres can support a population of 2P, they don't give us much different expectations of the number of people finding themselves in our circumstances, and so cancel out.

The simulation argument (or a brain-in-vats story or the like) is different and doesn't automatically  cancel out  because it's a way to make our observations more likely and common. However, for policy it does still largely cancel out, as long as the total influence of people genuinely in our apparent circumstances is a lot greater than that of all simulations with apparent circumstances like ours: a bigger future world means more influence for genuine inhabitants of important early times and also more simulations. [But our valuation winds up being bounded by our belief  about  the portion of all-time resources allocated to sims in apparent positions like ours.]

Another way of thinking about this is that prior to getting confused by any anthropic updating, if you were going to set a policy for humans who find ourselves in our apparent situation across nonanthropic possibilities assessed at the object level (humanity doomed, Time of Perils, early lock-in, no lock-in), you would just want to add up the consequences of the policy across genuine early humans and sims in each (non-anthropically assessed) possible world.

A vast future gives more chances for influence on  lock-in later, which might win out as even bigger than this century (although this gets rapidly less likely with time and expansion), but it shouldn't change our assessment of lock-in this century, and a substantial chance of that gives us a good chance of HoH (or simulation-adjusted HoH).

Comment by CarlShulman on Nuclear war is unlikely to cause human extinction · 2020-11-07T16:11:23.204Z · EA · GW

I agree it's very unlikely that a nuclear war discharging current arsenals could directly cause human extinction. But the conditional probability of extinction given all-out nuclear war can go much higher if the problem gets worse. Some aspects of this:

-at the peak of the Cold War arsenals there were over 70,000  nuclear weapons, not 14,000
-this Brookings estimate puts spending building the US nuclear arsenal at several trillion current dollars, with lower marginal costs per weapon, e.g. $20M per weapon and $50-100M all-in for for ICBMs
-economic growth since then means the world could already afford far larger arsenals in a renewed arms race
-current US military expenditure is over $700B annually,  about 1/30th of GDP; at the peak of the Cold War in the 50s and 60s it was about 1/10th; Soviet expenditure was proportionally higher
-so with 1950s proportional military expenditures, half going to nukes, the US and China could each produce 20,000+ ICBMs, each of which could be fitted with MIRVs and several warheads, building up to millions of warheads over a decade or so; the numbers could be higher for cheaper delivery systems
-economies of scale and improvements in technology would likely bring down the per warhead cost
-if AI and robotics greatly increase economic growth the above numbers could be increased by orders of magnitude
-radiation effects could be intentionally greatly increased with alternative warhead composition
-all-out discharge of strategic nuclear arsenals is also much more likely to be accompanied by simultaneous deployment of other WMD, including pandemic bioweapons (which the Soviets pursued as a strategic weapon for such circumstances)and drone swarms (which might kill survivors in bunkers); the combined effects of future versions of all of these WMD at once may synergistically cause extinction 

Comment by CarlShulman on Thoughts on whether we're living at the most influential time in history · 2020-11-05T18:29:38.100Z · EA · GW

Note that compared to the previous argument, the a prior odds on being the most influential person is now 1e-10, so our earliness essentially increases our belief that we are the most influential by something like 1e28. But of course a 1-in-a-100 billion prior is still pretty low, and you don't think our evidence is sufficiently strong to signficantly reduce it.

The argument is not about whether Will is the most influential person ever, but about whether our century has the best per person influence. With population of 10 billion+ (78 billion alive now, plus growth and turnover for the rest of the century), it's more like 1 in 13 people so far alive today if you buy the 100 billion humans thus far population figure (I have qualms about other hominids, etc, but still the prior gets quite high given A1, and A1 is too low).

Comment by CarlShulman on Are we living at the most influential time in history? · 2020-11-01T21:00:59.699Z · EA · GW

Wouldn't your framework also imply a similarly overwhelming prior against saving? If long term saving works with exponential growth then we're again more important than virtually everyone who will ever live, by being in the first n billion people who had any options for such long term saving. The prior for 'most important century to invest' and 'most important century to donate/act directly' shouldn't be radically uncoupled.

Comment by CarlShulman on We're Lincoln Quirk & Ben Kuhn from Wave, AMA! · 2020-10-31T18:29:40.518Z · EA · GW

Same with eg OpenAI which got $1b in nonprofit commitments but still had to become (capped) for-profit in order to grow.

If you look at OpenAI's annual filings, it looks like the $1b did not materialize.

Comment by CarlShulman on Towards zero harm: animal-free and land-free food · 2020-10-24T23:33:10.047Z · EA · GW

Thanks for pointing out that paper. Yes, it does seem like some of these companies are relying on cheap hydropower and carbon pricing.

If photovoltaics keep falling in price they could ease the electricity situation, but their performance would be degraded in nuclear winter (although not in some other situations interfering with conventional agriculture).


Comment by CarlShulman on Towards zero harm: animal-free and land-free food · 2020-10-23T17:29:10.440Z · EA · GW

Three forerunners are Air Protein (US), Solar Foods (Finland) and the Utilization of Carbon Dioxide Institute (Japan).

Thanks, I was familiar with the general concept here, and specific companies working with methane, but not the electrolysis based companies. I had thought that wouldn't be practical given the higher price of electrolysis hydrogen vs natural gas hydrogen.

 A production cost of $5-$6 per kilogram of 100 percent protein. It aims to have Solein on the market and in millions of meals by 2021, but before then it needs to scale-up from pilot plant to major commercial production, and Solein needs regulatory approval for human consumption.

Claims like these are many times more common than delivery, but this seems interesting enough to be worth examining.

Comment by CarlShulman on Which is better for animal welfare, terraforming planets or space habitats? And by how much? · 2020-10-19T23:40:56.468Z · EA · GW

I think this has potential to be a crucial consideration with regard to our space colonization strategy

I see this raised often, but it seems like it's clearly the wrong order of magnitude to make any noticeable proportional difference to the broad story of a space civilization, and I've never seen a good counterargument to that point.

Wikipedia has a fine page on orders of magnitude for power.  Solar energy received by Earth from the Sun is 1.740*10^17 W, vs 3.846*10^26W for total solar energy output, a difference of 2 billion times. Mars is further from the Sun and smaller, so receives almost another order of magnitude less solar flux. 

Surfaces of planets are a miniscule portion of the habitable universe, whatever lives there won't meaningfully directly affect aggregate population or welfare statistics of an established space civilization. The frame of the question is quantitatively much more extreme than treating the state of affairs in the tiny principality of Liechtenstein as of comparable importance to the state of affairs for the rest of the Earth.

I currently would guess that space habitats are better because they offer a more controlled environment due to greater surveillance as well human proximity, whereas an ecosystem on a planet would by and large be unmanaged wilderness, 

Even on Mars (and moreso on the other even less hospitable planets in our system) support for life would have to be artificially constructed, and the life biologically altered (e.g. to deal with differences in gravity), moreso for planets around stars with different properties. So in terms of human control over the creation of the environment the tiny slice of extraterrestrial planets shouldn't be expected to be very different in expected pseudowild per unit of solar flux, within one OOM. 

if we can determine which method creates more wellbeing with some confidence, and we can tractably influence on the margin whether humanity chooses one or the other. e.g. SpaceX wants to colonize Mars whereas BlueOrigin wants to build O'Neill cylinders, so answering this question may imply supporting one company over the other.

Influence by this channel seems to be ~0. Almost all the economic value of space comes from building structures in space, not on planetary surfaces, and leaving planets intact wastes virtually all of the useful minerals in them. Early primitive Mars bases (requiring space infrastructure to get them there) that are not self-sustaining societies will in no way noticeably substitute for the use of the other 99.99999%+ of extraterrestrial resources in the Solar System that are not on the surface of Mars in the long run. Any effects along these lines would be negligible compared to other channels (like Elon Musk making money, or which is more successful at building space industry).

Comment by CarlShulman on The scale of direct human impact on invertebrates · 2020-09-07T16:00:39.590Z · EA · GW

Thanks for the interesting post. Could you say more about the epistemic status of agricultural pesticides as the largest item in this category, e.g. what chance that in 3 years you would say another item (maybe missing from this list) is larger? And what ratio do you see between agricultural pesticides and other issues you excluded from the category (like climate change and partially naturogenic outcomes)?

Comment by CarlShulman on 'Existential Risk and Growth' Deep Dive #2 - A Critical Look at Model Conclusions · 2020-08-25T18:29:17.007Z · EA · GW
But this is essentially separate from the global public goods issue, which you also seem to consider important (if I'm understanding your original point about "even the largest nation-states being only a small fraction of the world"),

The main dynamic I have in mind there is 'country X being overwhelmingly technologically advantaged/disadvantaged ' treated as an outcome on par with global destruction, driving racing, and the necessity for international coordination to set global policy.

I was putting arms race dynamics lower than the other two on my list of likely reasons for existential catastrophe. E.g. runaway climate change worries me a bit more than nuclear war; and mundane, profit-motivated tolerance for mistakes in AI or biotech (both within firms and at the regulatory level) worry me a bit more than the prospect of technological arms races.

Biotech threats are driven by violence. On AI, for rational regulators of a global state, a 1% or 10% chance of destroying society looks enough to mobilize immense resources and delay deployment of dangerous tech for safety engineering and testing. There are separate epistemic and internal coordination issues that lead to failures of rational part of the rational social planner model (e.g. US coronavirus policy has predictably failed to serve US interests or even the reelection aims of current officeholders, underuse of Tetlockian forecasting) that loom large (it's hard to come up with a rational planner model explaining observed preparation for pandemics and AI disasters).

I'd say that given epistemic rationality in social policy setting, then you're left with a big international coordination/brinksmanship issue, but you would get strict regulation against blowing up the world for small increments of profit.

Comment by CarlShulman on 'Existential Risk and Growth' Deep Dive #2 - A Critical Look at Model Conclusions · 2020-08-24T16:24:10.171Z · EA · GW

I'd say it's the other way around, because longtermism increases both rewards and costs in prisoner's dilemmas. Consider an AGI race or nuclear war. Longtermism can increase the attraction of control over the future (e.g. wanting to have a long term future following religion X instead of Y, or communist vs capitalist). During the US nuclear monopoly some scientists advocated for preemptive war based on ideas about long-run totalitarianism. So the payoff stakes of C-C are magnified, but likewise for D-C and C-D.

On the other hand, effective bargaining and cooperation between players today is sufficient to reap almost all the benefits of safety (most of which depend more on not investing in destruction than investing in safety, and the threat of destruction for the current generation is enough to pay for plenty of safety investment).

And coordinating on deals in the interest of current parties is closer to the curent world than fanatical longtermism.

But the critical thing is that risk is not just an 'investment in safety' but investments in catastrophically risky moves driven by games ruled out by optimal allocation.

Comment by CarlShulman on A New X-Risk Factor: Brain-Computer Interfaces · 2020-08-23T23:13:33.407Z · EA · GW

Thanks for this substantive and useful post. We've looked at this topic every few years in unpublished work at FHI to think about whether to prioritize it. So far it hasn't looked promising enough to pursue very heavily, but I think more careful estimates of the inputs and productivity of research in the field (for forecasting relevant timelines and understanding the scale of the research) would be helpful. I'll also comment on a few differences between the post and my models of BCI issues:

  • It does not seem a safe assumption to me that AGI is more difficult than effective mind-reading and control, since the latter requires complex interface with biology with large barriers to effective experimentation; my guess is that this sort of comprehensive regime of BCI capabilities will be preceded by AGI, and your estimate of D is too high
  • The idea that free societies never stabilize their non-totalitarian character, so that over time stable totalitarian societies predominate, leaves out the applications of this and other technologies to stabilizing other societal forms (e.g. security forces making binding oaths to principles of human rights and constitutional government, backed by transparently inspected BCI, or introducing AI security forces designed with similar motivations), especially if the alternative is predictably bad; also other technologies like AGI would come along before centuries of this BCI dynamic
  • Global dominance is blocked by nuclear weapons, but dominance of the long-term future through a state that is a large chunk of the world outgrowing the rest (e.g. by being ahead in AI or space colonization once economic and military power is limited by resources) is more plausible, and S is too low
  • I agree the idea of creating aligned AGI through BCI is quite dubious (it basically requires having aligned AGI to link with, and so is superfluous; and could in any case be provided by the aligned AGI if desired long term), but BCI that actually was highly effective for mind-reading would make international deals on WMD or AGI racing much more enforceable, as national leaders could make verifiable statements that they have no illicit WMD programs or secret AGI efforts, or that joint efforts to produce AGI with specific objectives are not being subverted; this seems to be potentially an enormous factor
  • Lie detection via neurotechnology, or mind-reading complex thoughts, seems quite difficult, and faces structural issues in that the representations for complex thoughts are going to be developed idiosyncratically in each individual, whereas things like optic nerve connections and the lower levels of V1 can be tracked by their definite inputs and outputs, shared across humans
  • I haven't seen any great intervention points here for the downsides, analogous to alignment work for AI safety, or biosecurity countermeasures against biological weapons;
  • If one thought BCI technology was net helpful one could try to advance it, but it's a moderately large and expensive field so one would likely need to leverage by advocacy or better R&D selection within the field to accelerate it enough to matter and be competitive with other areas of x-risk reduction activity

I think if you wanted to get more attention on this, likely the most effective thing to do would be a more rigorous assessment of the technology and best efforts nuts-and-bolts quantitative forecasting (preferably with some care about infohazards before publication). I'd be happy to give advice and feedback if you pursue such a project.

Comment by CarlShulman on 'Existential Risk and Growth' Deep Dive #2 - A Critical Look at Model Conclusions · 2020-08-23T20:21:39.358Z · EA · GW

My main issue with the paper is that it treats existential risk policy as the result of a global collective utility-maximizing decision based on people's tradeoffs between consumption and danger. But that is assuming away approximately all of the problem.

If we extend that framework to determine how much society would spend on detonating nuclear bombs in war, the amount would be zero and there would be no nuclear arsenals. The world would have undertaken adequate investments in surveillance, PPE, research, and other capacities in response to data about previous coronaviruses such as SARS to stop COVID-19 in its tracks. Renewable energy research funding would be vastly higher than it is today, as would AI technical safety. As advanced AI developments brought AI catstrophic risks closer, there would be no competitive pressures to take risks with global externalities in development either by firms or nation-states.

Externalities massively reduce the returns to risk reduction, with even the largest nation-states being only a small fraction of the world, individual politicians much more concerned with their term of office and individual careers than national-level outcomes, and individual voters and donors constituting only a minute share of the affected parties. And conflict and bargaining problems are entirely responsible for war and military spending, central to the failure to overcome externalities with global climate policy, and core to the threat of AI accident catastrophe.

If those things were solved, and the risk-reward tradeoffs well understood, then we're quite clearly in a world where we can have very low existential risk and high consumption. But if they're not solved, the level of consumption is not key: spending on war and dangerous tech that risks global catastrophe can be motivated by the fear of competitive disadvantage/local catastrophe (e.g. being conquered) no matter how high consumption levels are.

Comment by CarlShulman on Should We Prioritize Long-Term Existential Risk? · 2020-08-21T18:38:20.908Z · EA · GW
People often argue that we urgently need to prioritize reducing existential risk because we live in an unusually dangerous time. If existential risk decreases over time, one might intuitively expect that efforts to reduce x-risk will matter less later on. But in fact, the lower the risk of existential catastrophe, the more valuable it is to further reduce that risk.
Think of it like this: if we face a 50% risk of extinction per century, we will last two centuries on average. If we reduce the risk to 25%, the expected length of the future doubles to four centuries. Halving risk again doubles the expected length to eight centuries. In general, halving x-risk becomes more valuable when x-risk is lower.

This argument starts with assumptions implying that civilization has on the order of a 10^-3000 chance of surviving a million years, a duration typical of mammalian species. In the second case it's 10^-1250. That's a completely absurd claim, a result of modeling as though you have infinite certainty in a constant hazard rate.

If you start with some reasonable credence that we're not doomed and can enter a stable state of low risk, this effect becomes second order or negligible. E.g. leaping off from the Precipice estimates, say there's expected 1/6 extinction risk this century, and 1/6 for the rest of history. I.e. probably we stabilize enough for civilization to survive as long as feasible. If the two periods were uncorrelated, then this reduces the value of preventing an existential catastrophe this century by between 1/6 and 1/3rd compared to preventing one after the risk of this century. That's not negligible, but also not first order, and the risk of catastrophe would also cut the returns of saving for the future (your investments and institution/movement-building for x-risk 2 are destroyed if x-risk 1 wipes out humanity).

[For the Precipice estimates, it's also worth noting that part of the reason for risk being after this century is credence on critical tech developments like AGI happening after this century, so if we make it through that this century, then risk in the later periods is lower since we've already passed through the dangerous transition and likely developed the means for stabilization at minimal risk.]

Scenarios where we are 99%+ likely to go prematurely extinct, from a sequence of separate risks that would each drive the probability of survival low, are going to have very low NPV of the future population, but we should not be near-certain that we are in such a scenario, and with uncertainty over reasonable parameter values you wind up with the dominant cases being those with substantial risk followed by substantial likelihood of safe stabilization, and late x-risk reduction work is not favored over reduction soon.

The problem with this is similar to the problem with not modelling uncertainty about discount rates discussed by Weitzman. If you project forward 100 years, scenarios with high discount rates drop out of your calculation, while the low discount rates scenarios dominate at that point. Likewise, the longtermist value of the long term future is all about the plausible scenarios where hazard rates give a limited cumulative x-risk probability over future history.

This result might not hold up if:
In future centuries, civilization will reduce x-risk to such a low rate that it will become too difficult to reduce any further.

It's not required that it *will* do so, merely that it may plausibly go low enough that the total fraction of the future lost to such hazard rates doesn't become overwhelmingly high.

Comment by CarlShulman on What are novel major insights from longtermist macrostrategy or global priorities research found since 2015? · 2020-08-21T06:15:07.108Z · EA · GW

"The post cites the Stern discussion to make the point that (non-discounted) utilitarian policymakers would implement more investment, but to my mind that’s quite different from the point that absent cosmically exceptional short-term impact the patient longtermist consequentialist would save."

That was explicitly discussed at the time. I cited the blog post as a historical reference illustrating that such considerations were in mind, not as a comprehensive publication of everything people discussed at the time, when in fact there wasn't one. That's one reason, in addition to your novel contributions, I'm so happy about your work! GPI also has a big hopper of projects adding a lot of value by further developing and explicating ideas that are not radically novel so that they have more impact and get more improvement and critical feedback.

If you would like to do further recorded discussions about your research, I'm happy to do so anytime.

Comment by CarlShulman on What are novel major insights from longtermist macrostrategy or global priorities research found since 2015? · 2020-08-18T16:40:56.503Z · EA · GW

The Stern discussion.

Comment by CarlShulman on What are novel major insights from longtermist macrostrategy or global priorities research found since 2015? · 2020-08-17T21:16:59.435Z · EA · GW

Hanson's If Uploads Come First is from 1994, his economic growth given machine intelligence is from 2001, and uploads were much discussed in transhumanist circles in the 1990s and 2000s, with substantial earlier discussion (e.g. by Moravec in his 1988 book Mind Children). Age of Em added more details and has a number of interesting smaller points, but the biggest ideas (Malthusian population growth by copying and economic impacts of brain emulations) are definitely present in 1994. The general idea of uploads as a technology goes back even further.

Age of Em should be understood like Superintelligence, as a polished presentation and elaboration of a set of ideas already locally known.

Comment by CarlShulman on What are novel major insights from longtermist macrostrategy or global priorities research found since 2015? · 2020-08-17T21:08:48.118Z · EA · GW

My recollection is that back in 2008-12 discussions would often cite the Stern Review, which reduced pure time preference to 0.1% per year, and thus concluded massive climate investments would pay off, the critiques of it noting that it would by the same token call for immense savings rates (97.5% according to Dasgupta 2006), and the defenses by Stern and various philosophers that pure time preference of 0 was philosophically appropriate.

In private discussions and correspondence it was used to make the point that absent cosmically exceptional short-term impact the patient longtermist consequentialist would save. I cited it for this in this 2012 blog post. People also discussed how this would go away if sufficient investment was applied patiently (whether for altruistic or other reasons), ending the era of dreamtime finance by driving pure time preference towards zero.

Comment by CarlShulman on What are novel major insights from longtermist macrostrategy or global priorities research found since 2015? · 2020-08-15T00:45:18.354Z · EA · GW
Trammell also argued that most people use too high a discount rate, so patient philanthropists should compensate by not donating any money; as far as I know, this is a novel argument.

This has been much discussed from before the beginning of EA, Robin Hanson being a particularly devoted proponent.

Comment by CarlShulman on The case for investing to give later · 2020-08-12T19:00:36.325Z · EA · GW
  • My biggest issue is that I don't think returns to increased donations are flat, with the highest returns coming from entering into neglected areas where EA funds are already, or would be after investment, large relative to the existing funds, and I see returns declining closer to logarithmically than flat with increased EA resources;
    • This is not correctly modeled in your guesstimate, despite it doing a Monte Carlo draw over different rates of diminishing returns, because it ignores the correlations between diminishing returns and impact of existing spending: if EA makes truly outsized altruistic returns, it will be by doing things that are much better than typical, and so the accounts on which more neglected activities are the best thing to do now have higher current philanthropic returns as well as faster diminishing returns
    • Likewise, high investment returns are associated with moving along the diminishing returns curve in the future, as diminishing marginal returns are not exogenous when EA is a large share of activity in an area; by drawing investment returns and diminishing returns from separate variables, your results wind up dominated by cases where explosive growth in EA funds is accompanied by flat marginal returns that are extremely implausible because of the missing correlations
    • These reflect a general problem with Guesstimate models, it's easy to create independent draws of variables that are not independent of each other and get answers exponentially off as one considers longer time frames or more variables
  • Regarding prognostications of future equity returns, I think it's worthwhile to follow other fundamental projections in breaking down equity returns into components such as P/E, economic growth, growth in corporate profits as a share of the economy etc; in particular, this reveals that some past sources of equity returns can't be extrapolated indefinitely, e.g. 100%+ corporate profit shares are not possible and huge profit shares would likely be accompanied by higher corporate or investment taxes, while early stock returns involved low rates of stock ownership and high transaction costs
  • When there are diminishing returns to spending in a given year, being forced to spend assets too quickly in response to a surprise does lower efficiency of spending, so regulatory changes requiring increased disbursement rates can be harmful
  • Mission hedging and tying funding to epistemic claims can be very important for altruistic investing; e.g. if scenarios where AI risk is higher are correlated with excess returns for AI firms, then an allocation to address that risk might overweight AI securities
Comment by CarlShulman on The case for investing to give later · 2020-08-12T18:35:46.134Z · EA · GW

GiveWell top charities are relatively extreme in the flatness of their returns curves among areas EA is active in, which is related to their being part of a vast funding pool of global health/foreign aid spending, which EA contributions don't proportionately increase much.

In other areas like animal welfare and AI risk EA is a very large proportional source of funding. So this would seem to require an important bet that areas with relatively flat marginal returns curves are and will be the best place to spend.

Comment by CarlShulman on The case for investing to give later · 2020-08-12T18:29:25.100Z · EA · GW

I agree risks of expropriation and costs of market impact rise as a fund gets large relative to reference classes like foundation assets (eliciting regulatory reaction) let alone global market capitalization. However, each year a fund gets to reassess conditions and adjust its behavior in light of those changing parameters, i.e. growing fast while this is all things considered attractive, and upping spending/reducing exposure as the threat of expropriation rises. And there is room for funds to grow manyfold over a long time before even becoming as large as the Bill and Melinda Gates Foundation, let alone being a significant portion of global markets. A pool of $100B, far larger than current EA financial assets, invested in broad indexes and borrowing with margin loans or foundation bonds would not importantly change global equity valuations or interest rates.

Regarding extreme drawdowns, they are the flipside of increased gains, so are a question of whether investors have the courage of their convictions regarding the altruistic returns curve for funds to set risk-aversion. Historically, Kelly criterion leverage on a high-Sharpe portfolio could have provided some reassurance with being ahead of a standard portfolio over very long time periods, even with great local swings.

Comment by CarlShulman on Improving the future by influencing actors' benevolence, intelligence, and power · 2020-07-21T20:01:40.359Z · EA · GW

Thanks for the post. One concern I have about the use of 'power' is that it tends to be used for fairly flexible ability to pursue varied goals (good or bad, wisely or foolishly). But many resources are disproportionately helpful for particular goals or levels of competence. E.g. practices of rigorous reproducible science will give more power and prestige to scientists working on real topics, or who achieve real results, but it also constraint what they can do with that power (the norms make it harder for a scientist who wins stature thereby to push p-hacked pseudoscience for some agenda). Similarly, democracy increases the power of those who are likely to be elected, while constraining their actions towards popular approval. A charity evaluator like GiveWell may gain substantial influence within the domain of effective giving, but won't be able to direct most of its audience to charities that have failed in well powered randomized control trials.

This kind of change, which provides power differentially towards truth, or better solutions, should be of relatively greater interest to those seeking altruistic effectiveness (whereas more flexible power is of more interest to selfish actors or those with aims that hold up less well under those circumstances). So it makes sense to place special weight on asymmetric tools favoring correct views, like science, debate, and betting.

Comment by CarlShulman on Investing to Give Beginner Advice? · 2020-06-22T20:15:35.000Z · EA · GW

Thanks, edited.