Getting People Excited About More EA Careers: A New Community Building Challenge 2019-03-10T07:35:29.690Z


Comment by sebastian_oehm on Getting People Excited About More EA Careers: A New Community Building Challenge · 2019-03-12T07:23:31.370Z · EA · GW

Hey Jan and Howie,

thanks very much for the clarifying discussion. The fact that there is this discussion (also looking at the high number of votes for the comments) illustrates that there is at least some confusion around rating EA org vs. non-EA org careers, which is a bit concerning in itself.

FWIW my original claim was not that people (neither 80k nor community members) get the rational analysis part wrong. And a career path where actual impact is a few years off should totally get a reduced expected value & rating. (My claim in the initial post is that many of the other paths are still competitive with EA org roles.) There is little actual disagreement that quant trading is a great career.

My worry is that many soft factors may cause people to develop preferences that are not in line with the EV reasoning, and that may reduce motivation and/or lead to people overly focused on jobs at explicit EA employers.

Also, you lack a 'stamp of approval' from 80k when you pursue some of these careers that you kind of don't need when doing a 'standard' path like working at CEA/FHI/80k/OPP or do a top ML PhD, even if all of them were rated 10. (In coaching days this was better, because you could just tell your doubting student group leader that this is what 80k wants you to do :) )

Comment by sebastian_oehm on Getting People Excited About More EA Careers: A New Community Building Challenge · 2019-03-12T07:00:48.255Z · EA · GW

Hey, I'm thinking of professional 'groups' or strong networks without respect to geography, though I would guess that some professions will cluster around certain geographies. E.g. in finance you'd expect EAs to be mainly in London, Frankfurt, New York etc. And it would be preferable for members to be in as few locations as possible.

I agree that local groups are very important, and plausibly more important, than professional groups. However, local groups work largely by getting members more involved in the community and providing 'push' factors to go into EA careers. I think the next frontier of community building will be to add these 'pull' factors. We have made a lot of progress on the local groups side, now it is time to think about the next challenge.

Re professional community builders: this is already happening & good. But they are largely working on getting members more engaged, rather than building strong professional 'core' communities (though some people do work in this direction, it is not a main focus).

I suspect the driving force will be volunteers at the start, similar to how student groups got started initially. These would be people that are already well-connected and have some experience in their field. This would also get around the issue that EA orgs may currently not have resources for such projects. I doubt funding will be an issue hif the volunteers meet these properties.

Comment by sebastian_oehm on Comparative advantage in the talent market · 2018-04-13T13:06:00.217Z · EA · GW

You could try to model by estimating how (i) the talent needs and (ii) the talent availability will be distributed if we further scale the community.

(i) If you assume that the EA community grows, you may think that the percentage of different skillsets that we need in the community will be different. E.g. you might believe that if the community grows by a factor of 10, we don't need 10x as many people thinking about movement building strategy (the problems size increases not linearly with the number of people) or entrepreneurial skills (as the average org will be larger and more established), but an increase by a factor of say 2-5 might be sufficient. On the other hand, you'd quite likely need ~10x as many ops people.

(ii) For the talent distribution, one could model this using one of the following assumptions:

1) Linearly scale the current talent distribution (i.e. assume that the distribution of skillsets in the future community would be the same as today).

2) Assume that the future talent distribution will become more similar to a relevant reference class (e.g. talent distribution for graduates from top unis)

A few conclusions e.g. I'd get from this

  • weak point against skills building in start-ups - if you're great at this, start stuff now

  • weak point in favour of building management skills, especially with assumption 1), but less so with assumption 2)

  • weak point against specialising in areas where EA would really benefit from having just 2-3 experts but unlikely need many more (e.g. history, psychology, institutional decision making, nanotech, geoengineering) if you're also a good fit for sth else, as we might just find them along the way

  • esp. if 2), weak points against working on biorisk (or investing substantially in skills building in bio) if you might be an equal fit for technical AI safety, as the maths/computer science : biologists ratio at most unis is more 1 : 1 (see, but we probably want to have 5-10x as many people working on AI rather than biorisk. [The naive view using current talent distribution might suggest that you should work on bio rather than AI if you're an equal fit, as the current AI : bio talent ratio seems to be > 10: 1]

All of this is less relevant if you believe in high discount rates on work done now rather than in 5-10 years.

Comment by sebastian_oehm on New Effective Altruism course syllabus · 2018-01-25T20:42:38.191Z · EA · GW

Thanks a lot for sharing this. The topics and readings lists strike me as pretty well chosen and interesting. This could be a very useful resource for local groups running discussion groups.